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Acquiring Rule Sets as a Product of Learning
in a Logical Neural Architecture
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Abstract—Envisioning neural networks as systems that learn
rules calls forth the verification issues already being studied
in knowledge-based systems engineering, and complicates these
with neural-network concepts such as nonlinear dynamics and
distributed memories. We show that the issues can be clarified
and the learned rules visualized symbolically by formalizing
the semantics of rule-learning in the mathematical language of
two-valued predicate logic. We further show that this can, at
least in some cases, be done with a fairly simple logical model.
We illustrate this with a combination of two example neural-
network architectures, LAPART, designed to learn rules as logical
inferences from binary data patterns, and the stack interval
network, which converts real-valued data into binary patterns
that preserve the semantics of the ordering of real values. We
discuss the significance of the formal model in facilitating the
analysis of the underlying logic of rule-learning and numerical
data representation. We provide examples to illustrate the for-
mal model, with the combined stack interval/LAPART networks
extracting rules from numerical data.

Index Terms—Adaptive resonance theory (ART) neural net-
works, classification, connectionist system, formal semantics, in-
ferencing, knowledge-based systems, logic, predicate, rule base,
rule extraction, synaptic learning.

I. INTRODUCTION

W E PRESENT a formalization of the semantics of certain
classes of neural networks in two-valued logic. The

need for such a formalization arises from the architectural
models proposed by some investigators [1]–[4] as systems
which learn rules, in the sense of a knowledge-based system.
Rule-learning by neural networks is an ambitious goal, for
it requires an interpretation of adaptation in a connection-
ist system as the learning of inference relations expressing
cause–effect, condition–action, or other antecedent-consequent
relationships understandable in human terms. In this paper, we
propose a formal but relatively simple model to support this
interpretation for a neural network whose learned rules are
readily analyzed in two-valued logic, yet can express complex
phenomena represented by real-valued data. The formalization
is intended as an analysis tool, to support the clarification and
possible resolution of the issues we discuss.

We emphasize at the outset that this is a theoretical paper
aimed at the analysis of practical applications. The aim here is
not to present specific neural-network models or performance
comparisons between them, but to present a formalization
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that helps clarify the issues in the symbolic representation
of neural-network processing. Our method is to present a
relatively simple, “user-friendly” formal model using as little
mathematical notation as possible while correctly representing
the semantics of the data and of the neural-network processing
of the data. To that end, relatively simple neural-network
architecures for data representation and rule extraction are used
to exemplify the formalization.

A. Rules and Neural Networks

The rule forms of knowledge-based systems and the strate-
gies they employ for executing rules are many and varied
[5], [6], but central to all rule-based systems is aninference
enginethat implements the system’s rule-execution strategy.
The most common form of rule is the general, antecedent-
consequent form suggestive of a deductive inference
in formal logic (although the system itself is usually based
upon heuristics). A set of rules for a given application forms
a rule basewhich changes from application to application and
can be incrementally updated as more is learned about an
application. The inference engine determines which of possibly
many rules apply when the user supplies an input query. It then
decides which of these rules to process, or else prioritizes them
for application one at a time. It processes the selected rules
in either antecedent–consequent order (forward chaining), pro-
ducing consequents as conclusions, or the reverse (backward
chaining), finding antecedents that apply to a given conclusion.
In forward-chaining, for example, a rulesucceedsfor input
if its antecedent is a statement that applies to As a result,
the system infers that applies to as well. Through a chain
of such deductions, the user obtains an answer to the query in
the form of a final conclusion.

An adaptive neural network learns such inference relations
throughsynaptic learning, in which it modifies the weights of
the synaptic connections between its nodes. The modifications
are the result of the simultaneous activation of connected
nodes. The activation is in turn the result of the network’s
processing of example application data cases in which the
as-yet-unknown rules apply.

Unfortunately, the current state of neural-network technol-
ogy does not include a generally accepted model describing
the processing in a neural network in terms of unambiguous
symbolic expressions for rule antecedents, consequents, and
the inference relation. When employing neural networks
as knowledge-based systems, however, it is important to have
such a model. For one thing, it is often desired to have an
explanation capabilityfor a rule-based system, allowing users
to see the line of reasoning leading to a conclusion as well as
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the conclusion itself. More generally, it is important to have a
model supporting knowledge-based verification and validation
[5]. Several issues arise in knowledge-based systems, con-
cerning potential pitfalls such as inconsistent rule sets. For
example, there might occur an instancein which one rule
concludes and another rule concludesnot The rules in
a rule base are often related through logical relationships that
can lead to such difficulties. The larger the rule base, the more
difficult it is to discern troublesome relationships by simple
means. Further discussion and examples of this are given in
[5], [6]. Addressing these issues requires a formal model of
the relationships among symbolic expressions which represent
rules and their applications.

A formal model of rule-learning in neural networks adds a
new dimension to the modeling task. A mathematically precise
representation must be found not only for symbolic expres-
sions, but also for neural-network quantities such as numerical
connection weights and for the relationships between these
two fundamentally different kinds of entities. In addition, the
learning of rules by a network requires a formalization of the
learning problem itself: How are symbolic logical relationships
to be learned from data? How can this occur in a connectionist
system?

B. A Formal Model

Formal models for neural networks have been proposed (see
[7] for a rather sophisticated model based upon nonmonotonic
logic and [8] for one that relates to fuzzy logic). Formalizations
can require some time for familiarization, particularly when
they involve mathematical models that are not in common use.
We propose a relatively simple formalization in “traditional”
mathematical logic and apply it to the investigation of rule-
learning in neural networks. Because of space limitations, we
present only the essentials needed to understand its application
to our example architecture. Hence, we avoid some of the
issues that can complicate logical models and caution that ours
may require extension to encompass neural-network models
that vary widely from that presented here. However, we have
tried to be careful in our definitions and use of terms and hope
this discussion helps clarify important aspects of rule-learning.

The LAPART (LAteral Priming Adaptive Resonance The-
ory) neural network [9] establishes relationships between
labeled sets, orclasses, of objects through synaptic learning.
The fundamental connection between this and purely symbolic
processing is that statement symbols such asand ,
introduced earlier, are labels for two equivalent conceptual
entities: classes of objects and logical functions. There are
various reasons for our adopting the term “class”: noise and
other phenomena in the application data can cause many
patterns to represent one object, data limitations can cause
one pattern to represent many objects, and it is often desirable
to establish groupings of objects that are examples of a single
important concept. The use of classes allows a two-level rep-
resentation—object and class—for flexibility in dealing with
these occurrences. The logical functions, calledpredicates,
yield either of two Boolean values,true or false , for a
given argument: That is, if and only if an object
denoted by is a member of class and false oth-

erwise. To formalize the concept represented by the argument
we have introduced the termobjectsto refer informally to

members of classes. Normally, objects are the events or items
represented by neural-network input, output, and connection-
weight patterns, including possibly the patterns themselves.

We can now reformulate the task of modeling the learning of
rules of the form : We seek a symbolic expression for
a statement expressing membership in classfor some
object and this expression is to be a logical consequence of
another expression (x) expressing membership of an object

in some class (we shall simplify by eliminating the object
symbol in Section III, but prefer to retain it for now). The
data for a given instance of the rule are given as a pair of input
data patterns representing an instance of the rule. We
have created a neural network called LAPART, specifically
designed for learning logical inferencing relationships from
data according to this scheme. A LAPART network consists
of two interconnected adaptive resonance theory version 1
(ART 1) networks [10]. An ART 1 network learns to recognize
classes of inputs through unsupervised learning, in which
it derives pattern features to represent object classes based
upon examples whose patterns appearsimilar according to a
criterion implemented by the network. A LAPART network
learns logical inference relations between object classes by
hypothesis-testing, in which it reads example pairs of data
patterns and forms and executes trial rules (Fig. 1). Each
ART 1 subnetwork reads a single pattern from each pair. It
incorporates the pattern into a cluster, corresponding to an
object class. The connections between the two ART 1 networks
force the classes to reflect correct rules. That is, a class
instance (object) tentatively recognized by the first network A
triggers a rule inferring that an instance of an associated class
(an as yet unseen object) must be recognized by the second
network B. Operating as just described, a LAPART network
performs 1) partially supervised ART 1 pattern classification,
resulting in synaptic learning within each ART network and
2) synaptic learning of the class-to-class inferences, or rules,
through interconnects between the ART 1 networks.

C. On the Contents of this Paper

The remainder of this paper focuses on a formal model of
rule extraction with a LAPART network and an associated
preprocessing network. The formalization is in the form of
formulas in a two-valued logic. We have intentionally omitted
discussion of probabilistic reasoning, fuzzy logic, and other
models of uncertainty on the grounds that they involve very
complex issues and would greatly increase the length of the
paper. We also omit discussion of “certainty factors” for rules,
an attempt at handling uncertainty in expert systems. For a
discussion of the latter, including a more general discussion
of uncertainty in models of probabilistic as well as heuristic
inferencing, see [11]. Our formalization of the semantics
of rule extraction with neural networks will be entirely in
symbolic statements with a “true–false” interpretation, leaving
open the issues of uncertainty. We also omit discussion of other
architectures such as fuzzy ARTMAP [12] that are functionally
similar to LAPART. Fuzzy ARTMAP, for example, learns
maps between multidimensional spaces represented in real as
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Fig. 1. The forward and backward inference rules implemented by a LA-
PART network.

well as binary patterns. A discussion of the semantics of these
maps—similar to our rules—is beyond the scope of this paper,
since formalizing these as learned rules is a more involved
task than is that for LAPART.

In Section II, we present a representation of ART 1 classi-
fication in formal logic. The basic idea is that if learning has
reached agoal state(i.e., the objects represented by the input
patterns are completely represented by the learned templates),
each template component represents a necessary condition for
an object to be a member of a class and conjunctions of these
conditions formalize the concept of generalization. We go on to
describe symbolic rules as learned inferences between classes
of objects in Section III. We define stack interval networks,
which encode real-valued pattern components as binary sub-
patterns of a data pattern, in Section IV. As the formalism
shows [13], [14], the significance of these networks is that they
capture the semantics of the ordering of numbers, a necessary
feature for data classification with real values. Section V
contains simulation examples and illustrates rule formation
with some visualization aids, and Section VI is the conclusion.

II. A RT 1 AND LOGIC

We shall assume a basic familiarity with ART 1; it is
described in many places [9], [10], [15], and [16] significantly
extends the results concerning its learning behavior. When act-
ing as a stand-alone system, an ART 1 network autonomously
clusters binary input patterns. In this section, we interpret
binary patterns as descriptions of objects in predicate logic
and then show how pattern clustering can be interpreted as
the formation of object classes.

A. Logic and Neural Networks

Neural-network nodes that have an activation threshold can
be regarded as logical functions of the neural events that
impinge upon them (see [17] and [18]), and we argue that
synapses can also. For a node, the events are connection-

weighted input signals; for a synapse, the events are patterns
of activity in the network that determine whether or not the
activity of its source node determines the activity of its target
node. Taking the view that neural events originate from things
that are somehow encountered in an application, we allow
the term “objects” to encompass all such events. A function
evaluation yields aproposition, a statement with an assigned
Boolean true or false , depending upon whether or not
the current input object possesses the property represented by
the function, or predicate. A network node can be intrepreted
as a predicate by regarding its output activation as a binary
ON/OFF signal, where ON (the valuetrue ) occurs when
the numerical sum of inputs to the node exceeds a threshold
value. The semantics of the predicate—what it means in the
context of the neural network and its data—is determined by
the input connection weights, or by the properties of a sensor
if the node is an input node, and is also determined by the
threshold value. Through their collective action, these quan-
tities implement a decision process to determine whether the
object represented by the current input to the node possesses
some property—a particular color, a brightness level, or more
generally, membership in some class uniquely determined by
a set of properties.

This underlies the connection between Boolean values and
the numerical values in data patterns, connection-weight pat-
terns, and patterns of ON/OFF activation over the network
nodes. A binary input pattern input to an ART 1 neural
network, representing an object can be regarded as a string
of “1’s” and “0’s.” Alternatively, it can be regarded as a
list of Boolean valuestrue and false , respectively,
representing truth or falsehood: Each input node “makes a
statement” that either does or does not appear to possess
the unique property that it represents. Correspondingly, we
use an identical notation to denote two different operations
(it will always be clear which is intended): The numerical
minimum and the logical AND, both denoted. For any
two binary patterns and having the same number of
zero–one components, orlength, let denote the binary
pattern that constitutes their componentwise minimum, where

. For propositions and
, on the other hand, let denote their logical AND, or

conjunction, which has the valuetrue or false depending
upon whether both statements are true or not.

Let denote an arbitrary binary input pattern to an
ART 1 network with input nodes; there being one pattern
component per input node, the pattern is said to have length

. The corresponding list of Boolean values indicates
whether possesses each in a list of elemental properties
(where . The values are derived via application
data preprocessing, and can characterize any of a number of
items—image brightness or color values, accelerometer signal
amplitudes, disease symptoms or diagnostic test results, and
so on. The pattern component is a binary one or zero,
indicating whether or not . Informally, is
the statement “ is observed to have property.”

Based upon and the current state of its synaptic
memory, the ART 1 network assignsto a class of objects
whose patterns are similar to a binarytemplatepattern for
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the class. Here, similarity means that and the template
share a sufficiently large subpattern of binary “1’s.” Each
class template is a pattern of synaptic connection weights
located in a distinct set of connections, separate from the
connections for the other class templates. Being adaptive, the
network will “learn” the information in by updating the
matching template’s synaptic weight values, thereby affecting
the network’s future classification of objects. In this way, the
network develops a classification scheme for objects from a
sequence of input examples.

The actual selection of object properties to be represented by
the predicates is an important consideration. The descriptive
value of the selected properties has a great impact upon the
effectiveness of the network in identifying objects in the user’s
application, and achieving an appropriate selection may dictate
considerable preprocessing of the available data. The logic of
the network, on the other hand, is independent of any particular
selection of properties. In analyzing this logic, it is enough to
discuss the manner in which ART 1 interprets the patterns,
with the properties regarded as abstract propositions.

B. The ART 1 Algorithm

The ART 1 classification algorithm finds an object class
to represent its current input based upon the binary input
pattern that represents . The persistent activation of
an node during the input of signifies that
has been assigned a class. The algorithm simply describes a
procedure for computing the class index. Let denote
the sum over the zero–one components in a binary pattern

Let be a small, positive value less than
, where is the number of input nodes . Let be the

ART 1 vigilance parameter, with . For a given
binary input pattern , the ART 1 algorithm specifies a
class node and its associated binary template pattern
by solving the combinatorial optimization problem

maximize

subject to (1)

The solution node serves as a label for a class of objects.
Formally, its persistent activation assigns the valuetrue to
the logical function evaluation , which denotes the
proposition, “ is a member of class .”

C. Formalizing

To see how the template pattern components appear in
the formalization, suppose that resonance has not yet oc-
curred in obtaining a solution to (1), but that the current
“choice” (for some is being evaluated via the ART 1
pattern-matching operation at the layer. The binary pattern
minimum with components , occurs as
the current activation pattern, with .
For each , then, the corresponding logical function evaluation

represents theconjunction, or logical AND, of
and a proposition corresponding to the template component

(where is the index of the tentatively selected node).

We express the proposition corresponding to as follows:

(2)

The subexpression is the familiar universal quantifier
applied to the variable , so that the implication formula

reads, informally, “For all , if is a member
of class , then has property .” The variable in ,
on the other hand, represents only thecurrent input object. The
occurrence of the conjunction at is formalized as follows:

(3)

The sign here means that the left and right hand expressions
have the same Boolean valuestrue or false . The conjunc-
tion on the right-hand side in (3) has the valuetrue if and
only if and
Equivalently, from the correspondence between logical truth
values and binary values, the binary activation value of node

is one, if and only if

D. Learning

The logical implication formulas (2) state putative necessary
conditions for class membership. In general, an object can
be adopted by a class (its binary pattern can resonate with
the class template) even though several of these conditions
are violated, hence, they do not characterize fully the ART 1
network’s behavior—that is taken care of by the optimization
formulation (1). What the template formulas do characterize
is a hypothetical goal state of learning, in which all objects
in an application will have been observed. As shown in [10],
the small value for used in (1) ensures that nodes whose
templates aresubsettemplates for the current input pattern will
be preferred in the competition. Here, the term “subset”
has the obvious meaning: A subset template has component
value “1’s” only where the input pattern has “1’s.” If the
largest subset template for an input pattern does not activate
the vigilance system, then it will occur immediately as the
resonant template. This is called thedirect access property.
One way of explaining this property is to say that the ART 1
system has reached a goal state of learning in an application
when the patterns representing the objects directly access their
resonant templates.

During a resonance, the conjunctions (3) are synaptically
learned by the network by adapting the template weight values
to equal the current pattern. This is expressed in the
following binary pattern equation:

(4)

The modified template value is the Boolean value of
the th conjunction in (3). When a class is first established,
all connection-weight values in its template are “1’s,” that is,
all the implications (2) are putative necessary conditions in the
absence of any learning. Many of them are found to befalse
as the network learns from examples, and the corresponding
template weights are therefore set to zero. We express this
monotonicity in the synaptic learning of ART 1 by saying that
an ART 1 network proceeds toward a goal state of learning
by deleting necessary conditions that have been found not to
apply to a class.
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In our analysis, the putative necessary conditions expressed
by the “1’s” in a template are generalizations about the objects
in a class. Let be the set of indices corresponding to
the surviving “1’s” in a template at any given time,

. Then aconjunctive generalizationabout
the class as of that time is the conjunction of putative
necessary conditions

(5)

This yields a formal definition of generalization for the ART
1 neural network: An ART 1 generalization about a class
of objects is the conjunction formula whose index set
corresponds to the class template. If learning has reached a
goal state, this template is the direct access template. That is,
the index set for the conjunction has maximal size such that
the conjunction is true for all objects in the class.

III. L EARNING THE RULES

It can be seen from Fig. 2 that there are separate systems
of lateral connections and between ART
1 networks and in a LAPART network. The roles
of all these connections are described in detail in [9]; for
brevity, we shall limit the discussion to two main sets: the

class-to-class connections, which are adaptive, and
the lateral reset connection, which is fixed.
The other connections help implement the inference-learning
(rule-learning) function of these main connections. The class-
to-class connection weights store the learned inferences, and
the lateral reset connection serves as the mechanism for
supervised learning.

A. How LAPART Learns Inference Relationships

Suppose that the objects in an application are of two kinds,
such as the weight of an adult bird and the average frequency
with which the bird flaps its wings. Suppose further that if
an object of the first kind falls into some class (where
there are mutually exclusive classes , then it is
always the case that some object in a unique class
(where there are classes occurs along with .
Suppose that a representation for individual objects of the two
kinds is available in two sets of Boolean-valued properties.
The objects can then be encoded as binary patterns, one for
each object of the first kind using the first property set and
one for each object of the second kind using the second
property set. The motivation behind LAPART is that two ART
1 networks, properly interconnected and with the properties of
each kind represented by the respectivelayers, might be
able to identify the correct class-to-class inference
relationships by processing binary pattern pairs corresponding
to example pairs of related objects. These inference
relationships are the rules learned by the network.

To simplify the discussion, we shall assume that the two
objects and in a related pair are really the
same object . The A- and B-network properties will be
regarded, then, as two sets of properties for a single set of
objects. Let the predicate corresponding to a network A

node be denoted . Similarly, let the predicate corre-
sponding to network B node be denoted . Evaluating
the and properties for an object , we obtain a
pair of binary input patterns for a LAPART
network. Upon receiving its input pattern , network
performs the usual ART 1 hypothesis-testing, then resonates
at an node corresponding to some class. If network A
has correctly represented, then, we can write .
If that is the case, then the layer will be allowed to persist
with the resonating pattern of activation, and this
pattern will be learned as the new version of template by
network A. However, the supervision enforced by the lateral
connections in LAPART may change this. There are two cases,
depending upon whether the-node has previously resonated
with an input pattern.

Consider first the case in which the -node has not
previously resonated with an input pattern. Then after a brief
delay (network has been allowed to suppress network’s
input until it achieved resonance), networkwill be allowed
to receive its input pattern. Network will then resonate on
some node representing a class . The simultaneous
resonance [Fig. 2(a)] leaves nodes and both active.
As a consequence, synaptic learning proceeds quickly and the

connection strength approaches its
upper bound value, which is a binary one. During any future
presentation of an input pattern pair for an object, if node

is the resonant node, it will send a strong signal to node
, selecting it as the exclusive class forin network B. As a

consequence, none of the connections for nodes
with will have a chance to compete, and their strengths
will remain at zero.

The second case occurs more frequently as the LAPART
network learns rules: If node has previously resonated, it
possesses a learned connection to a single node. Since
network delays network ’s input, as mentioned before,
there is a brief interval during which the hypothesis
and the always true statement are both
called into play. This occurs through the persistent activation
of the resonant node in network A and itslateral primingof
node through the previously learned connection.
The consequent activation of node is the inferred class
membership statement . The laterally primed activation
of , with network ’s input temporarily suppressed, forces
network to read out the template over the layer
[Fig. 2(b)], to be compared with its input pattern .
System still has control of its vigilance node, however,
and can either confirm or disconfirm the choice made for it
by network .

If the inferred class is accepted by , both networks,
and , will update their templates in the ART 1 fashion

If the inference is not accepted, however, a lateral reset occurs:
The vigilance system of network becomes active
[Fig. 2(c); see also Fig. 1]. This causes a reset of network,
but also a reset of network, because there is a direct, fixed
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(a)

(b)

(c)

Fig. 2. Schematic of LAPART processing an input pattern pair. (a) New classAi formed in network A; network B is allowed to act autonomously as
an ART 1 system and select a resonating classBj for its input; Ai ! Bj inferencing connection set to maximum strength. (b) Previously formed class
Ai already has a learned lateral connection to some classBj : Resonance in network A causesBj template to be read out overFB

1
via Ai ! Bj

activation of itsFB
2

node. (c) If B input/Bj template is not a favorable match,VIGB ; acting throughVIGA as well as its connections to theFB
2

layer, mediates a lateral reset involving both the A and B networks.

connection from to Network is now forced to
find a different class (where to represent the current
input object , and a new inference is made. Presentation of

input pattern pairs as described thus forces the formation of
pattern classes in network and in network in
which class membership depends as much upon the learned
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inferencing connections as it does upon the ART 1
classification process.

The learning of a synaptic connection from the node to
a single node conveys to LAPART the property that it
generalizes from a single instance occurring in classesand

to the rule

(6)

Because of the exclusive nature of in network B, a
complete formalization would include a formula stating that
a representative for in the B-network can existonly in
class For brevity, we will instead make this implicit by
the manner in which we apply the learned rules (6).

B. Applying LAPART to Rule-Learning

LAPART can be seen as a system for the autonomous
capture and retrieval of knowledge in the form of rules that are
implicit in masses of data. Let us refer to a LAPART network,
together with its synaptic connection-weight memory at some
stage of learning, as a LAPART system. A query to the system
is a list of boolean or truth values for an object
in the form of a binary pattern input to subnetwork
A. During rule learning and verification testing, is
accompanied by a list input to network B, as a binary
pattern . The ART 1 logic in network A is a forward-
inferencing resolution strategy: the choice of an existing class

selects a rule to fire, in the form (if
there is no appropriate class, a new rule is initiated). This
results in the inference of an object class. If is
present and the template is not a good match for it, the
ensuing lateral reset performs a backward inference via the
contrapositive rule (see Fig. 1).
By this process, LAPART creates, executes, tests, and modifies
rules. By using either the forward inference as a query answer
or the forward–backward inferencing as a rule-verification
scheme (see [9]), LAPART also serves as an inference engine.

As a system for capturing and using knowledge, LAPART
performs as a neural network in handling massive quantities of
data, while the formal analysis shows that it clearly serves as
a symbolic processor. LAPART’s use as a forward-chaining
inference engine is fairly straightforward: The fact that the
learned A-classes are mutually exclusive provides an auto-
matic resolution strategy for selecting a rule to fire for a given
query—merely fire the rule if the input
is a member of class . However, the real value of LAPART
is its role as an experimental neural architecture for rule-
learning. In this role, it serves as a tool for the investigation
of phenomena that can occur in systems that adaptively learn
rules as logical inferences from data. Our formal model is
being applied to this investigation.

C. Phenomena Encountered in Adaptive Inferencing

As mentioned in Section IIA, the data representation is a
major factor in determining the applicability of the learning
that takes place in an adaptive system. A simple neural network
cannot be expected to perform all the tasks of data representa-
tion, classification, and class-to-class inferencing. In working

with LAPART, we address this issue by using our knowledge
of its adaptive inferencing algorithm as well as the application
to guide the development of data preprocessing modules to
achieve an effective representation. Our formalization shows
[13] that the stack filter network works well with ART 1-based
architectures in the representation of real and integer values
in binary patterns.

Another important factor affecting applicability of the rules
learned by a LAPART network is the order of presentation of
examples. Different presentation orders can lead to different
outcomes; this is an inherent truth in applying most classifica-
tion algorithms, and the ART 1 algorithm is no exception. This
effect can be undesirable in applications in which there is no
intrinsic ordering of the data, such as for a static database. On
the other hand, it can be advantageous if useable information
is available on the effect that the order has upon classification:
If this information implies an ordering that is better in some
way than others, then this knowledge can guide the training
strategy for the system. ART 1 provides some leverage here,
for in [16] it is shown that learning in ART 1 follows a natural
order related to input pattern size (number of “1’s”). It would
be interesting to see this kind of result incorporated in a formal
model.

Another phenomenon that calls for a formal analysis is
the inconsistency that can occur between the learned rules.
As mentioned in Section I, inconsistency is a major issue in
knowledge base verification. In LAPART, a learned inconsis-
tency occurs when an input pattern is paired with two
different patterns and , where the first of the latter
two patterns does not trigger a lateral reset but the other
one does. An occurrence of this sort could mean one of the
following: 1) A mistake occurred in supplying input pattern
pairs to the LAPART network. 2) The patterns were correctly
generated, but the data are inconsistent due, for example, to
noise. 3) There is no mistake and no inconsistency—it just
happens that two different things can be inferred from the
same input, given two different contexts. LAPART has no
built-in recovery for occurrences 1) and 2). The use of a
probabilistic mathematical model would help compensate for
1). A more complex network would be needed to deal directly
with 2). This inconsistency must be detected by the network
if it is to compensate for it, and the LAPART architecture
does not currently provide for this: It only provides for
detecting a classification error for a single object with a
single class at a time. The cause of 3) is that the network

inputs do not contain enough information: An essential
part of the context for an inference is missing. Analyzing
an application to identify the missing context is a semantic
problem, hence, is a task for formal semantics. The class
templates and the lateral class-to-class inferencing connections
formed by a LAPART network can be used to adavantage
in such an analysis. Although it contains no mechanism for
signifying an occurrence of inconsistency (signifying that a
logical inconsistency had occurred would require a rather
sophisticated architecture), LAPART does store the occurrence
in the form of laterally connected templates.

Another phenomenon that can occur is as follows: Suppose
that an A-input pattern has a subset template for a class
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that would resonate with it, were it not for the presence
of a larger subset template for class, with . Suppose
further that the template, which would have been selected
by the rule would provide an acceptable
template for the B-input pattern . However, it is the
rule that is executed, and its inferred
class template is a poor match, producing a lateral reset.
Finally, suppose that at some time, it is desired to cease
providing input patterns to network B and use LAPART purely
as a forward-inference engine. Since no learning of any kind
took place when the input patterns for both antecedent and
consequent were available as just described, then the following
can occur at some future time when the LAPART network is
used purely in forward-inferencing. If the class and
templates have not changed in their status as attractors for the
pattern , and this pattern occurs as a query, then the
incorrect inference will occur—no longer corrected for by
the input of to network B. This phenomenon can be
detected by tracking individual pattern pairs through repeated
cycles of presentation to the LAPART network and noting
the repeated lateral resets that will occur with a pair that is
subject to the capture phenomenon. If a lateral reset occurs
every time a particular pair is presented, with the A-input
pattern consistently causing the inappropriate rule involving
a class to fire as discussed, then the inappropriate subset
template phenomenon has occurred. One can devise strategies
for circumventing this phenomenon, but none of these is a
substitute for a formal semantic analysis of the architecture
vis-a-vis the data representation.

Our research goal is a better understanding of neural-
network semantics through logical formalism. We hope that
this discussion has helped in clarifying some of the issues
involved and indicating how they might be elucidated by
expressing neural computations as logical inferences.

IV. ENCODING ANALOG DATA-STACK REPRESENTATION

Most applications of ART 1 networks require that data be
preprocessed to obtain an effective representation of objects.
In this section, we describe the stack interval network archi-
tecture, which converts integer- or real-valued data to binary
input patterns. The binary patterns output by stack interval
networks can be passed directly as input to one or both ART
1 networks in a LAPART network, enabling it to learn rules
about objects represented by numerical data.

For properties which are already formulated as predicates,
the preprocessing of data to obtain binary patterns is not
difficult to conceptualize. However, application data consisting
of real or integer values that aremeantto be numerical values
(as opposed to purely symbolic labels) must be preprocessed
in a way that preserves the semantics of numbers: Integer and
real numbers are totally ordered by the familiar(less than)
relation. For any two numbers and , either
or . Then if numerical values are to be regarded as
numbers rather than as abstract symbols, their neural-network
representation must capture at least some essential property of
the ordering relation. Whether the numbers are real or integer,
it is reasonable to demand that the following property hold:

If and are such that and then the binary
pattern for must have more in common with the binary
pattern for than it does with the binary pattern for. For an
ART 1 network, this means that and can be in the same
class only if is also in that class.

Notice that no such relationship holds when the binary
patterns are strings with the usual format used in digital
computers, where the binary values represent the presence or
absence of powers of two. For example, the numbers 122
and 128 represented as 8-b patterns in the powers-of-two
format, with low-order binary digits to the right, are 01 111 010
and 10000000, respectively. The two numerical values are
relatively close, yet a comparison of 1 b would show them
to be relatively dissimilar—an ART 1 network, for example,
would place them in separate classes regardless of its vigilance
value. An example relating ART 1 pattern-matching to the
semantics of the order relation is that the number 186, where

has the powers-of-two representation 10111010,
which matches the representation of 122 more closely than it
matches the representation of 128.

To properly encode numbers for ART 1 networks, we
apply a basic representation scheme called a stack numeral.
We then add more information, to achieve the stack interval
representation. This is done as follows. First, a fixed lower
bound and upper bound are chosen for the data values

for the particular numerical property to be represented in
binary patterns. Also, a positive integeris chosen. Each data
value is transformed to a positive integerstack value via
the equation

(7)

where forms the least integer greater than or equal to
. Next, we form a binary string of length, with “1’s”

beginning, say, at the left end of the string and with “0’s”
occupying the remaining positions to the right—hence the
term “stack.” For example, if we chose and

then 122 would have a stack representation as a
string of 122 “1’s” on the left and “0’s” on the right, and 128
would be a stack of all “1’s.” Clearly, these two binary strings
have relatively many binary values in common. Even more
important is the fact that the binary positions which have value
one in the stack representation of 122 are a subset of the binary
positions with value one in the stack representation of 128.
Stack numerals obey a “subset” relation that corresponds to the
order relation for the numbers they represent. This property
makes the stack numeral representation appropriate for the
ART 1 algorithm (this is proved in [13]). In this connection,
recall the direct access property of maximal subset templates.

Obviously, the stack representation gains in the effective-
ness of representing numbers at the cost of larger binary
patterns than the powers-of-two representation. The choice of
the number of stack levels is under the control of the user.
However, high precision in representing numbers can require
stacks—and, correspondingly, ART 1 networks—with many
nodes and connections.

One step remains to compute a stack interval pattern.
This step is to simply form the bit-by-bit complement of a
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(a) (b)

Fig. 3. Schematic of a stack numeral network, which forms the positive stack in a stack interval network. (a) The inhibitory connections implement
a binary pattern “subset” relationship that corresponds to the order relationship for subsets of the real number system. (b) The activation functionof a
stack node.� = 0 is used in the work reported here.

stack numeral and concatenate the two, obtaining a binary
string of length . The reason for this will be explained
presently. Using a simple example to illustrate, suppose that
it was decided to represent numbers in the range 0–128
using stack intervals with . Then the number 115
would have the stack numeral representation 1 111 111 110.
The complementary pattern is 0000000001, and the resulting
stack interval pattern is 11 111 111 100 000 000 001.

A neural network that implements the stack interval repre-
sentation (see Fig. 3) is described in [14], where it is proved
that the combined stack/ART 1 neural-network architecture
has the properties of Fuzzy ART. In the stack/ART 1 network,
several stack interval networks convert numerical pattern
values to binary stack interval patterns. Acting in parallel
through one-to-one connections to the input nodes of an ART
1 network, the stack interval networks generate a composite
binary input pattern for it. To within the discretization specified
by the stack parameters and the resulting templates
correspond to the hyperbox regions formed from the numerical
values by a fuzzy ART system operating in fast learning mode.
A stack interval network representing a single numerical value
that varies between the boundsand with resolution has

nodes and a system of fixed connections, inhibitory and
excitatory. For brevity, we will describe only the connections
for the stack numeral part of the network—a full description
of the stack interval network is in [14]. The correspondence
between stack interval templates and nonbinary hyperbox
regions is shown in Fig. 4.

In a single stack interval network, the firstof the stack
interval nodes represent the stack numeral half of a stack
interval pattern. These are called positive stack nodes. The
other nodes, called negative stack nodes, represent the
complement pattern. An item of numerical data can be thought
of as a signal unit (a pixel in an imaging sensor that detects
varying brightness levels, for example) whose output is a
numerical value This unit has excitatory input connections,
one-to-one and with unit strength, to each positive stack node
in a single stack numeral network. Thus, each positive stack
node receives as input. The positive stack array represents
the discretized stack value as follows. To simplify the
discussion, suppose that each node has activation threshold
value and that in the formula for converting

to Stack node 0, the lowest-order node, has inhibitory
connections through which it provides, when activated, a unit

(a) (b) (c)

Fig. 4. Three visualizations of ART1 templates when stack interval networks
supply the input representation: (a) hyperbox region representing a stack/ART
1 class in nonbinary(x1; x2) space, (b) positive and negative stacks forming a
binary stack interval template pattern, from which the hyperbox is constructed,
(c) range bar graph, constructed from each stack interval by simply drawing
a vertical bar whose extent is equal to the “gap region” between the top of
the positive stack and the bottom of the negative stack.

of inhibitory input to each of the other positive nodes. Node
1 has inhibitory connections to nodes 2 through, node 2
has inhibitory connections to nodes 3 throughand so on so
that node can receive as many as units of inhibition
from nodes 0 through . Then, in the usual neural-
network model in which a node becomes activated if the
sum of its inputs—excitatory and inhibitory —exceeds
its threshold, each node becomes activated if and only if
its input sum exceeds zero. Thus, stack numeral node
becomes activated only if node 0 becomes activated
But because of the inhibitory input from node 0, node
then requires that . But then, node 1 can overcome the
unit of inhibition it receives from node 0, hence, sends an
additional unit of inhibition to Proceeding through the
stack nodes preceding we see that requires in
order to become activated, and, in that case, nodes 0 through

will also have been activated. Notice that if ,
nodes through will remain inactive. Thus, nodes 0
through will produce an output of magnitude one and
through an output of magnitude zero. If the entire
positive stack will be activated, producing a row of “1’s.”
This illustrates the operation of the stack numeral network in
representing numbers in a specified range. The negative stack
nodes implement the complementary representation through
further use of inhibitory connections.

Stack interval patterns that represent numerical patterns are
formed by concatenating the stack interval patterns represent-
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ing the individual numerical pattern values. These composite
patterns, and the ART 1 templates that form from them, can be
visualized in four useful ways. Three of these are illustrated
for a binary template pattern derived from binary input pat-
terns representing two nonbinary values in Fig. 4. One way
[Fig. 4(a)] corresponds to the “hyperbox” representation for
fuzzy ART numerical pattern classes. The second [Fig. 4(b)]
is a simple lineup of the alternating positive and negative
stacks representing the numerical values. The third [Fig. 4(c)]
combines the positive and negative portions to create a “range
bar graph” on a normalized min/max linear graph. The ART 1
templates that form directly reveal the variation in numerical
values in the input patterns that have contributed to their
formation through binary pattern ANDing. For each numerical
pattern component, the positive stack will have “eroded” to
represent the minimum of all the numerical values in the
patterns that contributed to it, and the negative stack will
have “eroded” so that its bitwise complement represents the
upper bound. Thus, each binary stack interval template pattern
contains the information describing the total variation in input
pattern components that contributed to its formation. That is,
it represents an interval of nonbinary numerical valuesthat
have contributed to theth stack interval in the template (in
Fig. 4, takes the values one and two, since there are two
nonbinary components).

This brings us to the fourth visualization, which is given
directly in terms of the formal model of this paper: Each pos-
itive stack node represents a predicate of the form
for some where is the nonbinary value represented
by node of stack this is the value that exactly
corresponds to using the formula (7), where .
The corresponding negative stack node represents the predicate

. Suppose that the positive and negative stacks
corresponding to nonbinary componenthave and
“1’s,” respectively, where . Taking the complement
of the negative stack, we see that the total stack interval pattern
represents the interval Examples are
given in Section V.

Although the discretization of real into binary values im-
plemented by our stack network architecture is not a new
idea (see, e.g., [1]), our formalization of it helps clarify its
significance. Of further significance is the fact [14] that an
ART 1 network with stack interval networks preprocessing
analog pattern values for it (stack/ART 1) generates learned
pattern classes equivalent to those of fuzzy ART [19] with fast
learning, to within the resolution of the discretization of real
values by the stacks. Given the practical limits to resolution of
data values, this is an indication that fast-learning fuzzy ART
classes are well-described in “ordinary” two-valued logic. The
stack/ART 1 subnetworks of a stack/LAPART network form
classes similar (although not identical) to those of the ART
subnetworks of a fuzzy ARTMAP network.

V. THREE EXAPLES OF RULE-LEARNING

Three examples of rule-learning, or rule extraction, with the
combined stack interval/LAPART architecture are given in this
section. This is not meant as an indication of the performance

of this example architecturevis-a-vis other architectures. It
simply illustrates that our example architecture for formal
analysis can perform in nontrivial applications. In fact, it will
be seen that there are practical cases in which it performs
nearly as well as optimal classifiers.

When one or both ART 1 subnetworks of a LAPART
network are combined with stack interval networks, we call
the composite network stack/LAPART. We generally use stack
intervals to encode numerical data, and sometimes combine
this with binary codes representing purely symbolic labels for
properties of objects as well. A stack/LAPART network can
learn rules which, because of the formal model presented in
Sections II and III, can be easily extracted from the learned
neural memories contained in the templates. Using the formal
model for stack interval preprocessing networks in Section IV,
the rules can include nonbinary numerical properties. In this
section, we present three examples to illustrate this, all using
stack interval patterns. Examples 1 and 2 are pedagogical
in nature, and illustrate the visualization of templates as
hyperboxes and range bar graphs. Example 3 is from an actual
application, and illustrates rule extraction from complex data.

Example 1) Two-Dimensional Input Space, Two
Disjoint Rectangular Distributions

The numerical patterns for network A have two components
denoted and . The numerical patterns for network B have
a single component . The B patterns might as well have
been binary, since they represent purely symbolic labels for the
network A classes and the labels are input directly through the
input pattern pairs. Regarding the nonbinary numerical patterns
themselves as objects to avoid further introduction of notation,
let be the object represented by a particular pattern pair. We
denote the composite stack interval binary pattern input to
network A by , representing and , and the stack
interval pattern input to network B by . The network B
pattern represents a numerical value which is either high
or low, depending upon which of two classes are prescribed
for the corresponding network A pattern.

The points in Fig. 5(a) were generated from two disjoint,
but otherwise random, distributions of points in a
two-dimensional region of Euclidean space. Each of the 800
points is contained in one of two rectangular regions, with
corners at (0.2, 0.2) and (0.4, 0.6) for network A Class 1
and (0.6, 0.4) and (0.8, 0.8) for network A Class 2. Regarded
as numerical patterns with two components, the pairs were
coded as pairs of stack intervals having positive
stack nodes, resulting in 256 stack nodes total including the
complement, for a total ART 1 input binary pattern size of
512. Each stack was normalized to represent the nonbinary
interval for each dimension of the data. These
binary patterns were presented in random order to an ART 1
network with a vigilance value of . The network
learned two templates (rules), plotted in Fig. 5(b) as hyperbox
regions. Here, a single ART 1 network was used for network
A and network B is not present, since the binary input patterns
for the two mutually disjoint distributions are easily clstered
into two classes by ART 1—LAPART is not needed. Fig. 6
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(a) (b) (c)

Fig. 5. Two disjoint distributions in two-dimensional real space: (a) a scatter plot of the data samples (white for Class 1 and black for Class 2), (b)
the learned class templates as hyperboxes, defined by their lower left and upper right corners, (c) rule attractor regions based upon the two hyperboxes
(calculated using the ART 1 algorithm and stack parameter values).

Fig. 6. Range graph representation of the two rules learned in Example 1.

shows a visualization of the two rules as range bar graphs. In
this case, the range bar for each rule consequent is artificial;
for Rule 0 (Class 1) it is “high” and for Rule 1 (Class 2) it
is “low.”

In addition to the hyperbox versus range bar visualiza-
tion, this example aids in visualizing the connection between
resonance, template modification, and the region of attrac-
tion of a hyperbox outside its borders (see also [20]). The
region of attraction of points outside the boundary of a
hyperbox is important when a goal state of learning has
not yet been reached for a given collection of data points.
Template modification comes about because templates are
strong attractors for many binary patterns for which they are
not subsets. Fig. 5(c) shows the regions of attraction for the
two hyperboxes representing a goal state for the samples of the
two distributions shown in Fig. 5(a). Following the reaching of
this goal state, another set of points might be presented to the
network, with many of the points lying outside the boundaries
of the original two distributions. As long as the value of
does not change, many of the binary patterns representing
these points will be attracted by one or the other of the two
templates, and the attractor regions in Fig. 5(c) illustrate this
(of course, the templates will also be appropriately modified,
i.e., the hyperboxes will widen). Each attractor region for an
A-template corresponds to the rule for which the template
represents the antecedent, hence, we call each attractor region
a “rule attractor.” Note that a rule attractor has a distinctly

larger volume than would be found for the corresponding rule
if the rule were included in the rule base of a conventional
forward-chaining rule-based system. A conventional system
would require a point to be actually within a hyperbox for the
rule to succeed.

Example 2) Two Overlapping, Normally Distributed Classes

This example [21] illustrates the robustness of LAPART
in applications with noise and/or confounding observations.
Samples in a two-dimensional problem are distributed accord-
ing to two overlapping multivariate normal distributions. The
distribution parameters are the following.

Class 1: Mean variance .
Class 2: Mean variance .
Fig. 7 displays the randomly generated samples from the

two classes. The Bayesian classifier optimal decision surface
for this problem is a circle roughly centered on the narrower
Class 1 and has an optimal probability of correct classification
of approximately 81.5%. After the training of LAPART on
2000 samples total (1000 from each class), it was tested on
32 000 random samples equally divided among the two classes.
To compare the performance potential of LAPART with the
Bayes optimum, we investigated different values of with
this data. Since the distributions overlap, LAPART is needed
here, but network B is simply presented with labels for the
points—“high” for Class 1, “low” for Class 2—and is set
to one. For a fixed random ordering of the training data, and
using a grid search with resolution of 0.01 for the network A
vigilance value, the highest probability of correct classification
was found to be 77.6%. This is less than four percentage points
from optimal (the corresponding vigilance value was

. This example illustrates that, even with the limitations
discussed in Section III.C, LAPART can perform well as a
classification system when noise and apparent contradictions
are found in the training data.

The two examples just given illustrate the simple case of
class labeling, which is the meaning often given to the term
“classification.” In this case, the rule antecedents are learned
object classes but the consequents are simply labels. This does
not capture the full generality of rule extraction, in which the
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(a) (b)

Fig. 7. Two overlapping distributions in two-dimensional real space: (a) a scatter plot of the data samples, drawn from two normal distributions, (b)
the rule attractors based upon the hyperbox regions for the two class templates. The optimal Bayesian decision surface is a circle surrounding the
distribution with the smaller variance (white).

TABLE I
SUMMARY OF LAPART PERFORMANCE TESTS.PARAMETERS: RH = RELATIVE HUMIDITY; LC = LOW CLOUD AMOUNT; MC = MIDDLE CLOUD AMOUNT; HC =

HIGH CLOUD AMOUNT; % ERROR= PERCENT MISSCLASSIFIED ORCLASSIFICATION NOT DETERMINED BY LAPART. TWO KINDS OF INFORMATION ARE SHOWN FOR

EACH OF SIX DIFFERENTEXPERIMENTS: (1) THE X’S IN EACH COLUMN INDICATE WHETHER OR NOT THEPARAMETER WAS USED IN THE INPUTS TOLAPART AS A RULE

ANTECEDENT IN THEEXPERIMENT DESCRIBED BYEACH ROW. (2) THE TOTAL ERRORINCLUDESBOTH MISCLASSIFICATIONS ANDFAILURES TO FIND AN APPLICABLE RULE

consequents are also learned object classes. The last example
illustrates full rule extraction, with LAPART learning class-to-
class inferences while simultaneously learning the classes.

Example 3) Weather Parameter Prediction

The example is taken from an actual application of LAPART
to weather prediction. In the work of Soliz and Caudell
[22], [23], a large data set consisting of nearly 1000 weather
observations was used in the training. For this application,
concatenated stack intervals were used to represent all non-
binary values. The Cold Regions Research and Engineering
Laboratory (CRREL), Hanover, NH, made available several
series of weather data sets taken during events at Grayling,
MI and Yuma, AZ. These data have been used to train the
neural network and demonstrate the feasibility of a LAPART-
based weather forecast model. For each of several data cases,
a special subset of the data was used to train LAPART. A
subset of weather state parameters was selected as antecedent
(network A) parameters for each case. Observations of these
parameters over a 6-h period were used to forecast a single
parameter at a specified future time. The antecedent data were
drawn from three time periods: the current timein hours, and
two times and . Slightly more than 950 observations
were processed by LAPART and associated with a future state
parameter at . Antecedent parameters were selected from
a set that includes the amount of cloud cover for three cloud
types and the relative humidity. The consequent (predicted)
parameter was always the temperature.

To test the performance of LAPART in each case, nearly
5% (50 patterns) of the data were randomly selected and
withheld from the training session. The withheld patterns were
subsequently presented to the trained LAPART network and
their mapping to the forecast parameter checked against the
truth. The data for each case were reused in 20 tests, with
a different randomly drawn subset of 50 patterns withheld
for each test. The vigilance values were kept constant at

and , respectively. These values were
found to yield rules each representing tens to hundreds of
patterns, which was desirable. All variables were represented
by stack intervals with (see Section IV).

Table I summarizes the results of six different tests, each
using the indicated parameters in the rule antecedents (e.g.,
LC, MC where “low cloud” and “medium cloud” parameters
were used. The last column (labeled “% error”) shows the
percent of cases in which a test antecedent either yielded an
incorrect prediction or generated a new class in network A
(hence, no prediction) because it lay outside all of the rule
attractors for templates (hyperboxes) that had formed during
training.

Finally, representative rules are shown in logical form
in Fig. 8, illustrating the nature of the hyperbox regions
corresponding to the templates generated by LAPART. For
complex problems with a high dimensionality and massive
data bases, such as weather forecasting, the easily extracted
symbolic form of the rules provides knowledge that is easy
to interpret and to understand in human terms. Knowledge of
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Fig. 8. Two of the rules extracted from the LAPART templates for the
weather parameter prediction problem [23]. The human-readable logical form
of these rules is easy to extract from the stack interval templates and the
A ! B inferencing connections learned from the data.

this kind is difficult to extract from experts using classical
knowledge acquisition techniques.

VI. CONCLUSION

We have introduced a formal model for the underlying
logic of symbolic processing with a class of neural-network
architectures. We have show that this model characterizes key
aspects of rule-learning from data with an example neural net-
work called LAPART. Further, the model extends to patterns
whose components are real-valued by combining LAPART
with stack interval networks, whose formalization captures
the order semantics of numbers. We have illustrated nontrivial
rule-learning with results on data cases, including the learning
of simple rules for weather prediction from meteorological
data.

Our contribution is a formal model for symbolic processing
from numerical data using neural networks. It is intended as
an aid in the analysis of neural-network models, including the
analysis supporting formal verification as applied to neural
rule-based systems. The model requires careful extension to
address these issues in other neural-network architectures.
Extension to the formalization of uncertainty is also desirable.
The relationship of our Boolean predicate logic model to
fuzzy logic models of neural processing is not clear, but we
have established a relationship between it and Fuzzy ART for
quantized numerical values. The major advantage of boolean

predicate logic is that it is well studied in mathematical logic
and lends itself well to formal semantic models. We claim
that the formal model is a potentially useful analysis tool for
LAPART and similar neural-network architectures.
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